Deterministic algorithms for the hidden subgroup problem
نویسندگان
چکیده
We present deterministic algorithms for the Hidden Subgroup Problem. The first algorithm, abelian groups, achieves same asymptotic worst-case query complexity as optimal randomized namely~$ \Order(\sqrt{ n}\, )$, where~$n$ is order of group. analogous algorithm non-abelian groups comes within a~$\sqrt{ \log n}$ factor complexity. best known Problem has \emph{expected\/} that sensitive to input, n/m}\, where~$m$ hidden subgroup. In version this article~\cite[Sec.~5]{Nayak21-hsp-classical}, we asked if there a whose similar dependence on Prompted by question, Ye and Li~\cite{YL21-hsp-classical} \emph{abelian\/} which solve problem with~$ n/m }\, )$ queries, find subgroup \Order( \sqrt{ n (\log m) / m} + m ) $ queries. Moreover, they exhibit instances show in general, may be~$\order(\sqrt{ } \,)$, \emph{finding\/} entire also \,)$ or even~$\upomega(\sqrt{ \,) $.}We different complexity~$ groups. arguably simpler. it works (n/m) }\,) large class instances, such those over supersolvable build design all some at cost a~$\log m$ multiplicative increase
منابع مشابه
Continuous Quantum Hidden Subgroup Algorithms
In this paper we show how to construct two continuous variable and one continuous functional quantum hidden subgroup (QHS) algorithms. These are respectively quantum algorithms on the additive group of reals R, the additive group R/Z of the reals Rmod 1, i.e., the circle, and the additive group Paths of L paths x : [0, 1] → R in real n-space R. Also included is a curious discrete QHS algorithm ...
متن کاملGeneral Bounds for Hidden Subgroup Problem
The central issue of the hidden subgroup problem (HSP) is to bound the number of identical copies of coset states necessary to identify the hidden subgroup. We show general upper and lower bounds for this identification and its variant by information-theoretic arguments. These general bounds are tight for HSPs with all the candidate subgroups having the same prime order. In particular, our resu...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولEfficient Quantum Algorithms for the Hidden Subgroup Problem over a Class of Semi-direct Product Groups
In this paper, we consider the hidden subgroup problem (HSP) over the class of semi-direct product groups Zpr ⋊ Zq, for p and q prime. We first present a classification of these groups in five classes. Then, we describe a polynomial-time quantum algorithm solving the HSP over all the groups of one of these classes: the groups of the form Zpr ⋊ Zp, where p is an odd prime. Our algorithm works ev...
متن کاملFrom optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups
We approach the hidden subgroup problem by performing the so-called pretty good measurement on hidden subgroup states. For various groups that can be expressed as the semidirect product of an abelian group and a cyclic group, we show that the pretty good measurement is optimal and that its probability of success and unitary implementation are closely related to an average-case algebraic problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Information & Computation
سال: 2022
ISSN: ['1533-7146']
DOI: https://doi.org/10.26421/qic22.9-10-3